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Abstract

A finite volume formulation for large eddy simulation (LES) of turbulent pipe flows based on the compressible time-

dependent three-dimensional Navier–Stokes equations in Cartesian coordinates with non-Cartesian control volumes is

presented. The small scale motions are modeled by a dynamic subgrid-scale (SGS) model. A dual-time stepping

approach with time derivative preconditioning is employed to enable the simulations to run efficiently at low Mach

numbers. The equations with primitive variables, (p,u,v,w,T), are solved with an implicit lower-upper-symmetric-

Gauss–Seidel (LU-SGS) scheme. An isothermal turbulent pipe flow at two Reynolds numbers, and a turbulent pipe

flow with a low heat transfer are simulated to evaluate this compressible LES finite volume formulation. The results

agree very well with the experimental data and DNS results, verifying the accuracy of the present scheme.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

As computer hardware and algorithms improve, increasing attention is being given to direct numerical

simulation (DNS) and large eddy simulation (LES) of turbulent flows to obtain more accurate results, par-
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ticularly at low Reynolds numbers. Most DNS and LES studies have been for planar channel flows and the

simulations for flows in circular tubes are very sparse, especially with the compressible Navier–Stokes

equations.

Eggels et al. [1] performed DNS computations for fully developed incompressible pipe flow with an finite

volume formulation in cylindrical coordinates at low Reynolds number. An extended grid volume at the
axis was needed in the radial momentum equation to avoid the singularity at the center line of the pipe.

Orlandi and Fatica [2] simulated a rotating pipe flow with a finite difference approach in cylindrical coor-

dinates. The singularity was avoided by using the radial flux on a staggered grid. Based on the same idea,

Satake and Kunugi [3] have developed a finite volume scheme without a singularity for DNS of turbulent

pipe flows. Using the same approach, Satake and Kunugi [4] successfully simulated an axisymmetric

impinging jet with outflow confined between two parallel discs. This approach was further extended by

involving the energy equation to predict flows in circular tubes with three thermal boundary conditions:

uniform heat flux, a cosine distribution and circumferential non-uniform wall temperature [5]. DNS of tur-
bulent heat transfer in an axially rotating pipe flow with uniform heat flux was also performed by Satake

and Kunugi [6].

The LES work for turbulent pipe flow is very limited. To the authors� knowledge, the first LES of fully

developed incompressible turbulent pipe flow was computed by Unger and Friedrich [7]. Eggels and Nie-

uwstadt [8] simulated rotating pipe turbulent flow by LES using a finite volume formulation with a Smag-

orinsky subgrid-scale model. LES of turbulent flow in a curved pipe was reported by Boersma and

Nieuwstadt [9], and recently a dynamic subgrid-scale model has been used by Yang [10] to simulate fully

developed turbulent rotating pipe flow. All of these investigations solved the conserve equations repre-
sented in the cylindrical coordinate system.

It should be noted that the incompressible Navier–Stokes equations were employed in the above simu-

lations including simulations with heat transfer, where the passive scalar approach was employed. Recently,

Satake et al. [11] performed DNS for a turbulent gas flow using the compressible Navier–Stokes equations

with variable gas properties to grasp and understand the laminarization phenomena caused by strong heat-

ing. To the authors� knowledge, no LES work has been reported that used a compressible finite volume

formulation to allow property variations for turbulent pipe flow. It is important and of interest to develop

a suitable finite volume formulation for LES to simulate turbulent pipe flows with significant property
variations.

The objective of the present study was to develop an efficient colocated finite volume scheme for flows in

tubes and annuli based on the compressible three-dimensional Navier–Stokes equations along with the

compressible continuity and energy equations in Cartesian coordinates. The purpose of using a compress-

ible formulation is to enable simulations for which the temperature variation within the flow is very signif-

icant. However, in the present paper, results are limited to low heat transfer cases to enable comparisons

with results based on treating the temperature as a passive scalar. Non-Cartesian hexahedral and tetrahe-

dral control volumes constructed in cylindrical coordinates were used. The equations were solved for the
primitive variables (p,u,v,w,T) using a low Mach number preconditioned [12] implicit lower-upper-

symmetric-Gauss–Seidel (LU-SGS) scheme [13] that is second-order accurate in space and time. The meth-

od and rationale for using the equations in Cartesian coordinates will be discussed in the sections to follow.

Simulation results for turbulent pipe flows with and without heat transfer are compared with experimental

data and DNS results.
2. Governing equations for LES

For gas flows in a tube with property variations (density, viscosity, and conductivity) in the axial

and radius directions, the compressible Navier–Stokes equations are applicable even if a low speed case
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is treated. The effects of the smallest scale motions were separated from large scale motions by using the

top-hat filter function, which is defined as
Gð~x;~nÞ ¼ 1=D3; jxi � nij 6 D=2 ði ¼ 1; 2; 3Þ;
0; jxi � nij > D=2;

(
ð1Þ
where D is the filter width. In this paper, V1/3 was used as the filter width where V is the volume of the con-

trol volume.

The filtering operation does not generally commute with the differentiation operation for LES of inho-

mogeneous turbulent flow with a variable filter width. The commutation error is second-order in the filter
width [15]. In this work, since the grid spacing is the same order as the filter width and a second-order

numerical scheme is used, the finite difference error is then the same order as the commutation error. There-

fore, the present filtering operation can be considered to commute with the differentiation operation within

the accuracy of the numerical approximation. To avoid the numerical contamination due to commutation

error, the grid space is uniform in streamwise and circumferential directions, and smoothly varying in the

radial direction, the maximum stretching ratio is 1.07.

Farve-filtering [16] was used to simplify the filtered equations for compressible flow and yielded the

Favre-filtered non-dimensional compressible Navier–Stokes equations
oq
ot

þ oðq~ujÞ
oxj

¼ 0; ð2Þ

oðq~uiÞ
ot

þ oðq~ui~ujÞ
oxj

¼ � op
oxi

þ orij

oxj
� osij

oxj
; ð3Þ

oðqÊÞ
ot

þ o½ðqÊ þ pÞ~uj�
oxj

¼ oð~ui�rijÞ
oxj

�
o�qj
oxj

�
oQj

oxj
� a� p� e; ð4Þ
and the equation of state
p ¼ Rq~T : ð5Þ

The effects of the small-scale motions are present in the above equations through the subgrid-scale (SGS)

stress tensor, sij, in the momentum equation as
sij ¼ qðguiuj � ~ui~ujÞ; ð6Þ

and the SGS terms that are the last four terms on the right hand side of Eq. (4) (energy equation) as
Qj ¼ qcvðfTuj � ~T~ujÞ; ð7Þ

a ¼ ~ui
osij
oxj

; ð8Þ

p ¼ p
ouj
oxj

� p
o~uj
oxj

; ð9Þ

e ¼ rij
oui
oxj

� r̂ij
o~uj
oxj

; ð10Þ
where Qj is the SGS heat flux vector. For the present work, it is appropriate to neglect a, p and e since only
low Mach number flows were considered [17].
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The advantages of solving the conservation equations resolved in the Cartesian coordinate system include

the following. First, the Cartesian based equations are as simple as possible and can be put in strong conser-

vation (or divergence) form, which generally helps toward maintaining accuracy. If the alternative coordi-

nate-oriented systems such as the cylindrical or polar systems are used, the basis vectors change

directions, which introduces an ‘‘apparent force’’ to cause the turning that is non-conservative in form
and hard to represent accurately. Second, the equations in the cylindrical and polar systems contain singu-

larities at the coordinate origin. It is true that grid-related singularities may also occur when the Cartesian-

based equations are used, but these are usually easier to accommodate than singularities in the equations

themselves. It is generally accepted that there is no advantage to using equations represented in the cylindrical

or polar coordinate systems for numerical computations if the flows are three-dimensional in nature [14].

To close the system of equations, the SGS stress tensor and heat flux vector in the Favre-filtered equa-

tions need to be modeled. In this paper, the dynamic model proposed for compressible turbulence by Moin

et al. [18] and recommended by Lilly [19] was implemented. The test filter width is defined in the same way
as the grid filter width and is equal to twice the grid filter width.
3. Finite volume formulation

A coupled finite volume method was used to solve the filtered compressible Navier–Stokes equations

based on Cartesian coordinates. This approach has been successfully tested on planar channel flow with

Cartesian hexahedral control volumes [13]. The finite volume formulation used here is valid for pipe flows
with non-Cartesian control volumes.

3.1. Computational domain

As shown in Fig. 1, the computational domain is cut along the radius oa, and points a and b are the same

point. Consequently, the computational domain has four boundaries, boundary oa, boundary ob, boundary

ab and point o. Periodic boundary conditions are applied on the boundaries of oa and ob which are actually

the same boundary, no slip boundary conditions are used on the wall boundary, ab. For point o, no bound-
ary condition is needed because the area goes zero and the momentum and mass fluxes are zero also. Con-

sequently, no singularity is encountered at the center point.
y

b

o
a
-1 1 z

Fig. 1. Sketch of the cross-section of the computational domain.
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3.2. Integral approximation

The solution domain was continuously subdivided into non-Cartesian hexahedral and tetrahedral con-

trol volumes of unequal dimensions based on cylindrical coordinates. The typical two types of control vol-

umes are shown in Fig. 2. The primitive variables ð�p; ~ui; ~T Þ were stored at the geometric centers of the
control volumes (cell center scheme). With the cell center approach, the solution domain is easier to decom-

pose into multiple blocks. That is very important for the treatment of complex geometries and paralleliza-

tion of the code.

The volume integral can be approximated by the product of the mean value and the volume of the cell,

and the mean value can be approximated as the value at the center of the control volume. To calculate the

surface integral exactly, the flux vectors should be known everywhere on the surface. Since the information

at the center of the control volumes are available, the cell face values can be approximated in terms of the

volume center values using the ‘‘mid-point’’ rule. A weighting function is needed to interpolate the volume
center values at cell faces in the radial direction because the grid is stretched toward the wall. Consequently,

the surface integrals can be approximated as
Z
oX
ðE~iþ F~jþG~kÞ � d~S �

X6

b¼1

½ðEnx þ Fny þGnzÞS�b; ð11Þ
where E, F and G are the flux vectors in the x, y and z directions, respectively. The vector, d~S, is the cell face
area vector and (nx,ny,nz) is the unit normal of the cell face. For the cell faces in the streamwise and cir-

cumferential directions, S is the magnitude of the face area vector, but for the cell faces in the radial direc-

tion, S is the area of the projected-surface which is constructed by projecting the curved cell face onto a

plane perpendicular to (nx,ny,nz).

The gradients of velocity components and the temperature are needed at the cell faces to calculate the
viscous and sub-grid scale contributions to the flux vectors. The gradients were calculated using the Gauss

divergence theorem on an auxiliary control volume as
Z
X0
r/dX0 ¼

Z
oX0

/d~S0; ð12Þ
where / is a scalar, X 0 is the volume of auxiliary control volume and d~S0 is the cell face area vector of the
auxiliary volume. The auxiliary control volume was obtained by shifting the main control volume a half

index in the direction of the particular cell face on which the gradient was to be calculated.
Center

z
y

x
Center

Fig. 2. Sketch of control volumes.



X. Xu et al. / Journal of Computational Physics 203 (2005) 22–48 27
Time-derivative preconditioning [12] has been used to enable the computation of low Mach number

flows. The addition of the pseudo time derivative is termed the dual time step approach, and involves iter-

ating in pseudo time for each step in physical time. The original unsteady governing equations were satisfied

when the iteration process converged in pseudo time. The pseudo time derivative was discretized with a

first-order accurate Euler backward difference, and the physical time derivative was discretized with a sec-
ond-order accurate three-point backward difference. Time integration was performed using the implicit

LU-SGS scheme which will be discussed next.

3.3. LU-SGS scheme

The preconditioned, time accurate Favre-filtered governing equations were linearized about pseudo time

level m as
X
Ds

½I � þ ½C��1½T � 3
2

X
Dt

þ ½C��1
X6

b¼1

½ð½A�nx þ ½B�ny þ ½C�nzÞS�b

( )m

DW ¼ �Rm; ð13Þ
where [C] is the preconditioning matrix, [A], [B] and [C] are linearized inviscid flux vectors in x, y and z

directions, respectively. W is the vector of primitive variables and R is the preconditioned residual. The vis-

cous stresses and sub-grid scale stresses were lagged as the values of the previous pseudo time step and in-

cluded in the preconditioned residual. The surface index is defined as shown in Fig. 3 and we define the
surfaces in the streamwise direction as surfaces 1 and 3. The inviscid flux Jacobians on each face are defined

as
½Â� ¼ ð½A�Þb¼1;3;

½B̂� ¼ ð½B�n1y þ ½C�n1zÞb¼2;4;

½Ĉ� ¼ ð½B�n2y þ ½C�n2zÞb¼5;6:

ð14Þ
y1 1
, nz )

), nz(ny2 2

(n

x

(i,j,k)

(i,j+1,k)
(i,j+1,k-1)

(i,j+1,k+1)

(i,j,k-1)
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Fig. 3. Sketch of grid representation in yz plane.
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Substituting inviscid flux Jacobians by using Eq. (14), the linearized equation, Eq. (13), can be written as
X
Ds

½I � þ ½C��1½T � 3
2

X
Dt

þ ½C��1½½Â�1S1 � ½Â�3S3 þ ½B̂�2S2 � ½B̂�4S4 þ ½Ĉ�5S5 � ½Ĉ�6S6�
� �

DW ¼ �R: ð15Þ
The pseudo-time step, Ds, was set to infinity, corresponding to a Newton iteration that drives the Newton

linearization error to zero in each physical time step.

The flux Jacobians were modified [20] to accommodate the preconditioning matrix as
½~A� ¼ ½C��1½Â�; ½~B� ¼ ½C��1½B̂�; ½~C� ¼ ½C��1½Ĉ�: ð16Þ

The flux Jacobians were split as
½~A� ¼ ½~A�þ þ ½~A��; ½~B� ¼ ½~B�þ þ ½~B��; ½~C� ¼ ½~C�þ þ ½~C��: ð17Þ

where
½~A�� ¼ 1

2
ð½~A� � jk½~A�j½I �Þ;

½~B�� ¼ 1

2
ð½~B� � jk½~B�j½I �Þ;

½~C�� ¼ 1

2
ð½~C� � jk½~C�j½I �Þ:

ð18Þ
The quantities k½~A�; k½~B� and k½~C� are the maximum eigenvalues of the flux Jacobians ½~A�; ½~B� and ½~C�, respec-
tively. For the preconditioned system, the maximum eigenvalues are
k½~A� ¼
1

2R
ðRþ 1Þj~uj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� 1Þ2~u2 þ 4Rc2

q� �
;

k½~B� ¼
1

2R
ðRþ 1Þj~vn1y þ ~wn1z j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� 1Þ2ð~vn1y þ ~wn1zÞ

2 þ 4Rc2
q� �

;

k½~B� ¼
1

2R
ðRþ 1Þj~vn2y þ ~wn2z j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� 1Þ2ð~vn2y þ ~wn2zÞ

2 þ 4Rc2
q� �

;

ð19Þ
where R is the gas constant, c is the speed of sound and ~u; ~v and ~w are the Cartesian velocity components

in the x, y and z directions, respectively.

The flux Jacobians on the control volume faces were approximated as
ð½C�½~A�DW Þ1S1 ¼ ð½C�½~A�þDW Þi;j;kS1 þ ð½C�½~A��DW Þiþ1;j;kS1;

ð½C�½~A�DW Þ3S3 ¼ ð½C�½~A�þDW Þi�1;j;kS3 þ ð½C�½~A��DW Þi;j;kS3;

ð½C�½~B�DW Þ2S2 ¼ ð½C�½~B�þDW Þi;j;kSi;j;k þ ð½C�½~B��DW Þi;jþ1;kSi;jþ1;k;

ð½C�½~B�DW Þ4S4 ¼ ð½C�½~B�þDW Þi;j�1;kSi;j�1;k þ ð½C�½~B��DW Þi;j;kSi;j;k;

ð½C�½~C�DW Þ5S5 ¼ ð½C�½~C�þDW Þi;j;kS5 þ ð½C�½~C��DW Þi;j;kþ1S5;

ð½C�½~C�DW Þ6S6 ¼ ð½C�½~C�þDW Þi;j;k�1S6 þ ð½C�½~C��DW Þi;j;kS6;

ð20Þ
where S1 = S2, S5 = S6 and Si;j;k ¼ 1=2ðS2 þ S4Þi;j;k.
After substituting Eqs. (16) and (20) into Eq. (15) the result can be written as
ð½L� þ ½D� þ ½U �ÞDW ¼ �R; ð21Þ

where the matrices [L], [D] and [U] are
½L� ¼ �½C��1½ð½C�½~A�þÞi�1;j;kS3 þ ð½C�½~B�þÞi;j�1;kSi;j�1;k þ ð½C�½~C�þÞi;j;k�1S6�; ð22Þ
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½D� ¼ ½C��1½T � 3
2

X
Dt

þ ½C��1½ð½C�½~A�þÞi;j;kS1 � ð½C�½~A��Þi;j;kS3 þ ð½C�½~B�þÞi;j;kSi;j;k

� ð½C�½~B��Þi;j;kSi;j;k þ ð½C�½~C�þÞi;j;kS5 � ð½C�½~C��Þi;j;kS6�; ð23Þ

½U � ¼ ½C��1½ð½C�½~A��Þiþ1;j;kS1 þ ð½C�½~B��Þi;jþ1;kSi;jþ1;k þ ð½C�½~C��Þi;j;kþ1S5�: ð24Þ
Because of the splitting of the flux Jacobians,
½C�½~A�þ � ½C�½~A�þ ¼ jk½~A�j; ð25Þ

½C�½~B�þ � ½C�½~B�þ ¼ jk½~B�j; ð26Þ

½C�½~C�þ � ½C�½~C�þ ¼ jk½~C�j; ð27Þ
the matrix [D] can be reduced to
½D� ¼ 3

2

X
Dt

½C��1½T � þ ðjk½~A�jS1 þ jk½~B�jSi;j;k þ jk½~C�jS5Þ½I �: ð28Þ
Because the product of [C]�1[T] is a diagonal matrix, the matrix [D] is also diagonal. The north surface area,

S2, is zero in the central region and the matrices [L], [D] and [U] were changed to
½L� ¼ �½C��1½ð½C�½~A�þÞi�1;j;kS3 þ ð½C�½~B�þÞi;j�1;kSi;j�1;k þ ð½C�½~C�þÞi;j;k�1S6�; ð29Þ

½D� ¼ ½C��1½T � 3
2

X
Dt

þ ½C��1½ð½C�½~A�þÞi;j;kS1 � ð½C�½~A��Þi;j;kS3 � ð½C�½~B��Þi;j;kSi;j;k

þ ð½C�½~C�þÞi;j;kS5 � ð½C�½~C��Þi;j;kS6�; ð30Þ

½U � ¼ ½C��1½ð½C�½~A��Þiþ1;j;kS1 þ ð½C�½~C��Þi;j;kþ1S5�; ð31Þ
where the matrix [D] can be simplified as
½D� ¼ 3

2

X
Dt

½C��1½T � þ ðjk½~A�j½I �S1 � ð½C�½~B��Þi;j;kSi;j;k þ jk½~C�j½I �S5Þ: ð32Þ
Eq. (21) can be approximately factored as
ð½L� þ ½D�Þ½D��1ð½D� þ ½U �ÞDW ¼ �R; ð33Þ

and efficiently solved in three steps as follows:
Step 1 : ð½L� þ ½D�ÞDW� ¼ �R;

DW� ¼ ½D��1ð�R� ½L�DW�Þ;
Step 2 : ð½D� þ ½U �ÞDW ¼ ½D�DW�;

DW ¼ DW� � ½D��1½U �DW;

Step 3 : Wmþ1 ¼ Wm þ DW:
Since [D] is diagonal except for the control volumes in the center region, the inversion of [D] required a

trivial amount of work and hence the LU-SGS scheme was still very efficient compared to other implicit

schemes.
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4. Boundary conditions

Due to the cell center finite volume formulation, ‘‘ghost’’ or ‘‘image’’ cells, as depicted in Fig. 4,

were needed to enforce the boundary conditions. The conditions lying on the boundaries were satisfied

by setting up the proper values at ghost cells. Three boundary conditions used in this research are
described here.

4.1. Solid wall boundary conditions

No slip boundary conditions were enforced for the velocity components at the solid walls as
~ug ¼ �~unb; ~vg ¼ �~vnb; ~wg ¼ �~wnb; ð34Þ

where the subscript �g� denotes the ghost cell and the subscript �nb� denotes the near wall control

volume. Pressure was set as �pg ¼ �pnb by the approximate boundary condition o�p=on ¼ 0 at the solid
wall.

For heat transfer cases, two ways of imposing the uniform heat flux wall boundary were applied: fixed

wall temperature distribution and fixed wall heat flux. With fixed wall temperature distribution boundary

condition, the temperature at ghost cells can be evaluated as ~T g ¼ 2~T w � ~T nb. To enforce the fixed non-di-

mensional wall heat flux, qw, at the wall, the temperature at the ghost cell was set as
~T g ¼ ~T nb þ
qwRePr

lw

Dl; ð35Þ
where Dl is the distance between the cell centers of near the wall control volume and ghost cell and lw is the

non-dimensional molecular viscosity at the wall. For variable property flows, the molecular viscosity at the
wall is a nonlinear function of the wall temperature, lw ¼ lwð~T wÞ. An iterative procedure is needed to ob-

tain the correct viscosity value at the wall, and hence, ghost cell temperature. The non-dimensional heat flux

is given in terms of the dimensional quantities as
qw ¼ q�w
qrefV refT refc�p

; ð36Þ
where the subscript, ref, denotes values at a reference state.

4.2. Periodic boundary conditions

For the isothermal cases considered in this research, the flows were assumed to be fully developed and

they were simply assigned periodic boundary conditions at the inflow and outflow boundaries. The periodic
(g)

Grid boundary

Ghost cell

control volume
Near boundary

(nb)

Fig. 4. Ghost cells for boundary conditions.
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boundary conditions were enforced by copying values of the variables in the boundary control volume at

the outflow boundary to the ghost cell at the inflow boundary, and by copying values of the variables in the

boundary control volume at the inflow boundary to the ghost cell at the outflow boundary. The pressure

actually is not periodic in the streamwise direction due to the negative, linear streamwise pressure gradient

that drives the flow. The pressure was assumed to be step-periodic and decomposed into periodic and ape-
riodic components as
�pðx; y; z; tÞ ¼ bxþ �ppðx; y; z; tÞ; ð37Þ
where b is the average streamwise pressure gradient. The equation of state becomes
�q ¼ �p

R~T
¼ bx

R~T
þ

�pp
R~T

: ð38Þ
For moderate Reynolds numbers, the pressure gradient term is much smaller than the periodic pressure and

bx=ðR~T Þ is negligible compared to �pp=ðR~T Þ. Therefore, the density can be approximated as
�q �
�pp
R~T

: ð39Þ
By replacing �p with �pp in the governing equation and adding the streamwise pressure gradient as a body

force in the right hand side of the streamwise momentum equation, the periodic assumption for pressure

can be satisfied and the periodic pressure component is determined in the simulation by requiring

that the mean mass flow rate be constant. Following the approach investigated by Benocci and Pinelli

[21], the average streamewise pressure gradient was calculated dynamically at each physical time step to

provide the desired mass flow rate as
bnþ1 ¼ bn � 1

Dt
_m
Ac

� �0

� 2
_m
Ac

� �n

þ _m
Ac

� �n�1
" #

; ð40Þ
where Ac is the cross-flow area of computational domain and Dt is the physical time step. The quantity
_m=Ac is average mass flow rate and ð _m=AcÞ0 is the desired mass flow rate. For example, the ghost cell values
at the inflow boundary is set as
�pg ¼ �ppð0; j; kÞ ¼ �ppðni; j; kÞ;
~ug ¼ ~uð0; j; kÞ ¼ ~uðni; j; kÞ;
~vg ¼ ~vð0; j; kÞ ¼ ~vðni; j; kÞ;
~wg ¼ ~wð0; j; kÞ ¼ ~wðni; j; kÞ;
~T g ¼ ~T ð0; j; kÞ ¼ ~T ðni; j; kÞ:

ð41Þ
Periodic boundary conditions were also enforced in the circumferential direction.
4.3. Step-periodic boundary conditions

For the heat transfer cases with property variations, due to the negative linear streamwise pressure

gradient that drives the flow and the positive linear temperature gradient resulting from the heat addi-

tion, the periodicity assumptions were not valid for pressure, temperature or streamwise velocity. Step-

periodic boundary conditions [13] were adopted in this work. This is implemented by assuming that
the temperature variations in the streamwise direction are step-periodic for the uniform heat flux case

and the local mass flux is streamwise-periodic. For example, the boundary conditions for the inlet

boundary were given as



32 X. Xu et al. / Journal of Computational Physics 203 (2005) 22–48
�pg ¼ �ppð0; j; kÞ ¼ �ppðni; j; kÞ;
ð�q~uÞg ¼ ð�q~uÞð0; j; kÞ ¼ ð�q~uÞðni; j; kÞ;
~vg ¼ ~vð0; j; kÞ ¼ ~vðni; j; kÞ;
~wg ¼ ~wð0; j; kÞ ¼ ~wðni; j; kÞ;
~T g ¼ ~T ð0; j; kÞ ¼ ~T ðni; j; kÞ � D~T x;

ð42Þ
where D~T x is the average fluid temperature difference between inflow and outflow boundaries. When the

heat transfer is low enough that the property variations are negligibly small, the value of D~T x can be
approximated as the bulk temperature difference, DTb, and fixed by the uniform heat flux boundary con-

dition as
D~T x ¼
4qwL

ð _m=AcÞD
; ð43Þ
where _m=Ac is the non-dimensional mass flow rate per unit cross-sectional area, L is the non-dimensional
length of computational domain, and D is the non-dimensional pipe diameter.
5. Results and discussion

5.1. Isothermal turbulent pipe flow

The simulation was designed to match the flow conditions of the available experimental and DNS re-
sults. The DNS computations were performed by Eggels et al. [1] with grid resolution 256 · 96 · 128 in

the streamwise, radial and circumferential directions, respectively. The laser Doppler anemometry

(LDA) and particle image velocimetry (PIV) measurements were performed by Westerweel et al. [22].

The computational domain is shown in Fig. 5, where the radius of the pipe is denoted by r, and the length

of the computational domain by L, where L = 10r. All the dimensions are normalized by the pipe radius r.

The length of the computational domain, which should be long enough to include the largest scale struc-

tures, was chosen with the guidance of DNS simulations [1,7]. The target bulk Reynolds number based on

hydraulic diameter was equal to 5300, the Mach number was 0.001, and the non-dimensional physical time
step was 0.01. The simulations were run with eight processors on the Origin 2000 machines. For the sim-

ulation with fine grid resolution, 64 · 40 · 100, it required about 5.6 CPU h for each processor per 1000

time steps.

To study the grid independence, simulations were performed with different grid resolutions. The results

are shown here with 48 · 32 · 64, 64 · 40 · 80 and 64 · 40 · 100 grids in the streamwise, radial and circum-

ferential directions, respectively. Simulation with higher grid resolution, 96 · 64 · 128, also has been con-
L

z

y

xo

r

Fig. 5. Pipe flow geometry and coordinate system.
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ducted, the results are very similar to that of grid resolution, 64 · 40 · 100, as shown in Fig. 6. Therefore,

the grid resolution, 64 · 40 · 100, was used as the finest grid resolution for simulations at low Reynolds

number in this paper. Grids were uniform in both the streamwise and circumferential directions, but clus-

tered toward to the wall using the algebraic hyperbolic tangent stretching in the radial direction. The con-

trol volume dimensions in the streamwise and radial directions are given in Table 1 with respect to the
radius and in wall coordinates. The superscript �+� represents a quantity in wall units, where in terms of

non-dimensional variables, x+ = Rerefusx/mw, where Reref is the reference Reynolds number and is defined

as Reref = qrefurefLref/lref. The control volume dimension in the circumferential direction varied linearly with

radius and the maximum and minimum spacings are given in Table 2. It was found that the grid resolution,

64 · 40 · 100, was fine enough to solve the large scale field and the effect by refining the grid in the circum-

ferential direction was more efficient for improving the accuracy than in the other two directions.

Some mean flow properties of the LES, DNS, and experiments are listed in Table 3, where uc is the cen-

terline velocity and ub is the bulk velocity. As shown, the friction velocity, us, of the two coarse grids is
under-predicted, while the agreement between the results of the fine grid, DNS, and experimental results

is within a few percent. The mean streamwise velocity profile normalized by friction velocity is shown in

Fig. 6. The linear velocity distribution u+ = y+ for y+ < 5 is well resolved with all the coarse and fine grids.

For the region where y+ > 30, the logarithmic velocity distribution represented by u+ = 2.5 lny+ + 5.5 is not

followed exactly by the numerical simulations or experiments. Patel and Head [23] also observed that the

flow in a pipe fails to conform to the accepted law of the wall even at Reynolds number considerably above

3000. Laufer [24] and Lawn [25] demonstrated that only for a Reynolds number much larger than the pre-

sent one, does the turbulent pipe flow exhibit a logarithmic velocity distribution, at least in part of the cross
section. However, the fine grid results agree very well with the DNS and experimental results. Large differ-

ences are observed between the results of both coarse grids and the DNS and experimental results.

The root-mean-square (rms) values of fluctuating velocities, normalized by the friction velocity, are

shown in Fig. 7 and compared with the DNS and experimental data. The measurements of circumferential

velocity fluctuations from PIV and LDA are not available. Use of both coarse grids resulted in overpredic-

tion of urms and underprediction of urrms
and uhrms

. For the fine grid, good agreement was achieved near

the wall region, but both DNS and LES data underpredicted the urms near the core region. According to
Fig. 6. Mean streamwise velocity profile in wall coordinates.



Table 1

Control volume dimensions in streamwise and radial directions

Grid Streamwise spacing Radius spacing

Dx Dx+ Drmin Drþmin Drmax Drþmax

48 · 32 · 64 0.208 34.715 0.0087 1.45 0.0539 8.981

64 · 40 · 80 0.1563 26.955 0.0063 1.087 0.0446 7.694

64 · 40 · 100 0.1563 27.85 0.0063 1.123 0.0446 7.948

Table 2

Control volume dimensions in circumferential direction

Grid Circumferential spacing

(rDh)min ðrDhÞþmin (rDh)max ðrDhÞþmax

48 · 32 · 64 0.0053 0.8818 0.0982 16.359

64 · 40 · 80 0.0035 0.6038 0.0785 13.549

64 · 40 · 100 0.0028 0.4994 0.0628 11.197

Table 3

Mean flow properties of LES, DNS and experiments

LES(coarser) LES(coarse) LES(fine) DNS PIV LDA

Res = usD/m 333 345 356 360 366 371

ub/us 15.9 15.36 14.86 14.73 14.88 14.68

uc/us 20.47 19.95 19.14 19.31 19.38 19.39
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Tennekes and Lumley [26], the turbulent intensities should drop to about 0.8us in the core region which is

evident in the present rms profiles.

The skewness and flatness factors for the velocity fluctuations are shown in Figs. 8 and 9, respectively.

The differences between the LES and DNS results and experiments were larger than for the second-order
statistics; however, reasonable overall agreement between the present data and DNS and experimental sta-

tistics was obtained.

In Fig. 10, the one-dimensional wavenumber spectra of the streamwise and radial fluctuation velocities

obtained from fine LES results are compared with the PIV data. Both the experimental and LES spectra are

normalized by the corresponding rms values. In the wave number range from 5 to 20, the difference between

LES and PIV is small except for the streamwise velocity fluctuations near the wall. This large discrepancy

was also observed in the DNS results [1] and was explained to be most likely caused by a short simulation

domain.
The shear stress contributions were calculated by
sres ¼ �hqu0u0ri; ð44Þ

svis ¼ � l
Re

ou
or

� 	
; ð45Þ

sSGS ¼ � lt

ou
or

� 	
; ð46Þ
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Fig. 7. RMS velocity fluctuations normalized by wall friction velocity.
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where sres is the resolved Reynolds shear stress, svis is the viscous shear stress, and sSGS is the modeled SGS

stress. The shear stress contributions are shown in Fig. 11. The viscous shear stress is small near the core

region and hence the Reynolds shear stresses with all three grid resolutions is similar near the core region.

The viscous shear stress becomes important near the wall and the different Reynolds shear stress distribu-

tions are induced by the different grid resolutions. As shown, the coarse grids gave underprediction of the

resolvable Reynolds shear stress and overprediction of the viscous shear stress near the wall. No DNS or
experimental data are available for the modeled SGS stress. In the present simulations, the profiles of Reyn-

olds shear stress and the viscous shear stress with the fine grid matched very well with the DNS and exper-

imental data, while the coarse grids resulted in larger modeled SGS stress than the fine grid in the near wall

region due to a larger value of the modeled SGS viscosity. Fig. 12 shows the ratio of the modeled SGS vis-

cosity to the molecular viscosity for the three grids employed. This ratio is larger for coarser grids and the

resulting level of dissipation may have been responsible for the overprediction of urms and the underpredic-

tion of urrms
and uhrms

shown in Fig. 7.

The sum of the three shear stress contributions is the total shear stress and is shown in Fig. 13. Since the
flow is fully developed and in a statistical steady state, the total shear stress must be linear, which is ob-

served in the present simulations. It should be noted here that the linear distribution is independent of
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the grids, because the normal-to-the-wall gradient of total shear stress must balance the pressure gradient,

which is a fixed value for the fully developed flow.

As shown in Table 4, the average friction coefficient Cf obtained with the fine grid agrees well with the

DNS results and experimental data. In the table, the difference between present results and the DNS or

experimental data, diff, is defined as
diff ¼ present result� comparison data

comparison data
: ð47Þ
5.2. Coarse DNS results

The simulation without a SGS model was conducted to test effects of the SGS model. The same fine grid

resolution, 64 · 40 · 100, as for the LES was used, and the results which literally corresponded to coarse

DNS results were compared with the LES results. As shown in Fig. 14, the mean streamwise velocity profile

of this coarse DNS is very similar as the LES counterpart; however, a discrepancy in the rms values of the

fluctuating velocities is observed in Fig. 15. LES predicted a larger peak value of urms which agreed better
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with the DNS results [1] than did the coarse DNS results. The urrms
and uhrms

profiles of the LES also

matched with DNS results better than coarse DNS.

Since the Reynolds number of the current simulation is low, the finest LES grid resolution
(64 · 40 · 100) may be sufficient to resolve most energy-carrying scales. Also the existing numerical dissi-

pation will play the same role as the eddy viscosity to dissipate the turbulent energy. As a consequence,

the coarse grid results deviated only slightly from the LES results. However, the comparison indicated that

the additional dissipation added by the SGS model improved the results. Therefore, the current scheme has

relative small numerical dissipation so that the dynamic SGS model plays an important role.

5.3. A simulation at a higher Reynolds number

Although this compressible LES formulation is most economical for applications to low Reynolds num-

ber turbulent pipe flows with significant property variations, a test for the capability of this LES scheme at

higher Reynolds number was also conducted by simulating a fully developed turbulent pipe flow at the bulk

Reynolds number of 20,000. The grid resolution was 96 · 64 · 128 and the control volume dimensions in
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Table 4

Comparison of friction coefficient with 64 · 40 · 100 grid

Correlation Cf Diff. (%)

Present simulation 0.00905 –

DNS 0.00922 �1.8

PIV 0.00903 +0.2

LDA 0.00928 �2.5
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wall units are listed in Table 5. The simulation was run on an Alpha EV6.7 cluster using 8 processors, and

required 12.6 CPU hours per processor per 1000 physical time step.

The results were compared with the available experimental data [27] obtained by using a single-compo-

nent laser-Doppler velocimetry (LDV). As observed in Figs. 16–18, good agreement with experimental data
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Table 5

Control volume dimensions in wall units

Dx+ Drþmin Drþmax ðrDhÞþmin ðrDhÞþmax

27.41 1.59 15.82 0.78 25.83

0.0 0.2 0.4 0.6 0.8
r/R

0.0

1.0

u/
u b

LDV, Imao et al., 1996
LES (96x64x128)

Fig. 16. Comparison of mean streamwise velocity profile.

0.0 0.2 0.4 0.6 0.8
r/R

0.0

1.0

2.0

3.0

4.0

<
U

rm
s>

/u
τ

<urms>/uτ (LDV, Imao et al., 1996)
<urrms

>/uτ (LDV, Imao et al., 1996)
<uθrms

>/uτ (LDV, Imao et al., 1996)
<urms>/uτ (LES, 96x64x128)
<urrms

>/uτ (LES, 96x64x128)
<uθrms

>/uτ (LES, 96x64x128)

Fig. 17. Comparison of RMS velocity fluctuations.
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were obtained, except a little underprediction was found for the rms values of fluctuating velocities in the

radial and circumferential directions.

5.4. Turbulent pipe flow with very low heat transfer

To be continuing with the validation of the LES formulation for heat transfer, a low heat flux case was

simulated to keep the effects of property variations small enough to allow comparison with passive scalar
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DNS heat transfer results. The configuration is shown in Fig. 19. The computational domain was the same

as that used in isothermal turbulent pipe flow simulations and the fine grid resolution, 64 · 40 · 100 grid in
streamwise, radial and circumferential directions, was used.

For fully developed turbulent pipe flow with constant fluid properties, the time averaged streamwise

velocity and temperature no longer change in the streamwise direction. Consequently, the average local,

wall, and bulk streamwise temperature gradients are all equal to a constant and only depend on the amount

of heat being added to the flow, as
oT
ox

¼ oT w

ox
¼ oT b

ox
¼ constant; ð48Þ
where the bulk temperature is defined as
T b ¼
1

qbubAc

Z
quT dA: ð49Þ
Eq. (48) could be used in the current simulation because the flow was assumed to be quasi-developed and

the property variations were very small. By setting a constant qw value at the wall, the isoflux thermal

boundary condition at the wall can be implemented by using Eq. (35). However, Kasagi et al. [28] and
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Fig. 19. Schematic of pipe flow with constant wall heat flux, qw.
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Dailey [13] reported that implementing the above condition for DNS and LES gives near wall fluctuations

larger than observed experimentally because the simulations do not take into account the heat capacity of

the wall. The wall temperature fluctuations should be negligibly small so that the wall could be regarded as

isothermal.

In order to obtain small wall temperature fluctuations and achieve the desired heat flux, an alternative
thermal boundary condition has also been investigated by setting a fixed wall temperature which varied lin-

early in the streamwise direction as follows:
T wðxÞ ¼ T wð0Þ þ
oT w

ox

� �
x; ð50Þ
where Tw(0) is the wall temperature at the first location of simulating domain, and oTw/ox is the wall tem-

perature gradient along the streamwise direction. For nearly fully developed flow, the wall temperature gra-

dient can be related to the specified heat flux. This fixed wall temperature distribution boundary condition

was also used by Satake and Kunugi [29] in their DNS study.

The simulation was designed to compare with the passive scalar results of Satake and Kunugi [29], in

which the non-dimensional DNS computational domain was 15 · 1 · 2p with a grid of 256 · 128 · 128
points in the streamwise, radial, and circumferential directions, respectively. The non-dimensional wall

heating rate was set as
qw ¼ q�w
qrefU refT refC

�
p

¼ 4:0� 10�4: ð51Þ
The reference Mach number was set as Mref = 0.001 to ensure nearly incompressible results and the non-

dimensional time step was 0.01.

The dimensionless temperature parameter, h+, is defined as
hþðx; y; z; tÞ ¼ hT �
wiðxÞ � T �ðx; y; z; tÞ

T �
s

; ð52Þ
where hT �
wi is the averaged wall temperature and T �

s is the friction temperature. The friction temperature

was calculated by
T �
s ¼

q�w
q�
wc

�
pu

�
s

: ð53Þ
For the present simulations, the very low heat flux resulted in a wall-to-bulk temperature ratio of

Tw/Tb = 1.08. Since the variation of the temperature parameter, h+, in the streamwise direction was negli-

gibly small due to very low heat transfer, the ensemble averages of the temperature statistics were

performed in the streamwise and circumferential directions and in time. The mean temperature profiles

are plotted in wall coordinates in Fig. 20. The linear profile, h+ = Pry+, is matched exactly in the conductive

sublayer with both isoflux and fixed linear wall temperature gradient thermal boundary conditions. The
results also agree well with DNS data and the empirical log-law (h+ = 2.853 lny+ + 2.347) formula in the

logarithmic region except for a little underprediction near the center.

The rms of the temperature fluctuations in the near wall region is shown in Fig. 21. The isoflux thermal

boundary condition results in a large overprediction when compared with the DNS results, and unrealis-

tically large temperature fluctuations at the wall. However, the rms temperature fluctuations obtained with

fixed wall temperature distribution boundary condition match with the DNS data very well in the near wall

region.

The streamwise and wall-normal turbulent heat fluxes normalized by friction velocity and temperature
are shown in Figs. 22 and 23, respectively. A large overprediction of streamwise turbulent heat flux is
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observed for the isoflux thermal boundary condition, while very good agreement is obtained with the fixed

wall temperature distribution boundary condition. It should be noted that although the temperature fluc-

tuations do not agree very well with the DNS results in the core region of the pipe, fairly good agreement is

obtained for the turbulent heat fluxes between the present simulations and DNS data. This good agreement
may be because the velocity fluctuations dominated the temperature fluctuations here.

The ratios of the modeled SGS turbulent viscosity to the local molecular viscosity for the low heat trans-

fer cases are plotted in Fig. 24. Because the molecular viscosity becomes larger and turbulence intensities

become smaller in heat transfer cases, smaller values of lt/l(y) were observed compared with the isothermal

case shown in Fig. 12.

The friction coefficients and Nusselt numbers for the present simulations with two different thermal

boundary conditions are compared with the constant property correlations which were proposed by Gnie-

linski [30] and valid for 2300 < ReD < 5 · 106. The friction coefficient correlation is
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Fig. 23. Wall-normal turbulent heat flux normalized by friction velocity and temperature.
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Cf ¼ ð1:58 ln ReD � 3:28Þ�2 ð54Þ

and the Nusselt number correlation is defined as
NuD ¼ ðCf=2ÞðReD � 1000ÞPr
1þ 12:7ðCf=2Þ1=2ðPr2=3 � 1Þ

; ð55Þ
where ReD is the bulk Reynolds number based on hydraulic diameter. As shown in Table 6, the friction

coefficient is overpredicted and Nusselt number is underpredicted when specifying the constant heat flux,

qw, value at the wall. It is observed from Table 7 that both friction coefficient and the Nusselt number

are underpredicted compared with the correlation when the fixed wall temperature distribution boundary
condition is used. Compared to the isothermal case, a slightly larger difference between the present simu-

lations and correlations were observed, but agreement is still within the uncertainty band usually ascribed



0.00 0.10 0.20 0.30 0.40 0.50
 r/D

0.00

0.05

0.10

0.15

0.20

µ t/µ
(y

)

LES (64x40x100)
Low heating (isoflux BC) with q

+
=0.0004

Low heating (Tw(x) BC) with q
+
=0.0004

Fig. 24. Ratio between modeled SGS turbulent viscosity and local molecular viscosity for case with heat transfer.

Table 6

Comparison to constant property correlations with constant qw

Correlation Cf Diff. (%) NuD Diff (%)

Present simulation (constant qw) 0.01 – 16.3 –

Gnielinski (1976) 0.0095 +4.75 17.23 �5.4

Table 7

Comparison to constant property correlations with fixed Tw distribution

Correlation Cf Diff. (%) NuD Diff. (%)

Present simulation (fixed Tw) 0.0085 – 17.0 –

Gnielinski (1976) 0.0093 �8.6 18.0 �5.4
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to the correlations for turbulent flows with heat transfer. The larger difference is most likely because the

properties are not exactly constant in the present simulations.
6. Conclusions

In this study, a compressible finite volume scheme was developed based on conservation equations in

Cartesian coordinates for the large eddy simulation (LES) of turbulent pipe flows with significant property
variations using hexahedral and tetrahedral non-Cartesian control volumes. The algorithm solved the com-

pressible Favre filtered Navier–Stokes equations in a fully coupled manner with a time-accurate implicit

LU-SGS scheme. A time-derivative preconditioning technique was employed to enable the computation

of nearly incompressible flows.

The second-order accurate finite volume LES formulation was first evaluated by simulating isothermal

turbulent pipe flows at two Reynolds numbers. A grid dependence study was performed for the low
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Reynolds turbulent flow which indicated that a grid resolution of 64 · 40 · 100 in the streamwise, radial

and circumferential directions was necessary and sufficient to produce satisfactory results. With this grid,

very good agreement with DNS and experimental data were obtained for mean velocities, rms velocity fluc-

tuations, and shear stress distributions. The overall agreement with DNS and experimental high-order sta-

tistics was reasonable. For frictions coefficient, excellent agreement was obtained with DNS and
experimental data. Good agreement with experimental data was also obtained when simulating a turbulent

pipe flow at a higher Reynolds number of 20,000.

The finite volume scheme was further evaluated by simulating turbulent pipe flows with low constant

wall heat flux so that comparisons could be made with the passive scalar results. Two ways of imposing

the uniform heat flux wall boundary conditions were investigated. The temperature statistics were com-

pared with DNS passive scalar results. The mean temperature matched with DNS data very well with both

boundary conditions. In the near wall region, the temperature fluctuations compared well with DNS results

for the fixed wall temperature boundary condition, while it was overpredicted with constant qw boundary
condition. Good agreement was obtained with fixed wall temperature boundary condition in the near wall

region for the turbulent heat fluxes. The friction coefficients and Nusselt numbers agreed to within the

uncertainty band with the constant property empirical correlations.

The study indicated that the present second-order accurate finite volume formulation based on Cartesian

coordinates is capable of performing accurate LES for the flow through pipe using hexahedral and tetra-

hedral control volumes with moderate grid resolution. The isoflux thermal boundary condition can be

implemented by specifying a fixed temperature distribution at the wall and this boundary condition can

be used to predict turbulent pipe flows with property variations.
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